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SUMMARY

Ribosome stalling is manifested by the local accu-
mulation of ribosomes at specific codon positions
of mRNAs. Here, we present ROSE, a deep learning
framework to analyze high-throughput ribosome
profiling data and estimate the probability of a ribo-
some stalling event occurring at each genomic loca-
tion. Extensive validation tests on independent data
demonstrated that ROSE possessed higher predic-
tion accuracy than conventional prediction models,
with an increase in the area under the receiver oper-
ating characteristic curve by up to 18.4%. In addition,
genome-wide statistical analyses showed that ROSE
predictions can be well correlated with diverse puta-
tive regulatory factors of ribosome stalling. More-
over, the genome-wide ribosome stalling landscapes
of both human and yeast computed by ROSE recov-
ered the functional interplays between ribosome
stalling and cotranslational events in protein biogen-
esis, including protein targeting by the signal recog-
nition particles and protein secondary structure for-
mation. Overall, our study provides a novel method
to complement the ribosome profiling techniques
and further decipher the complex regulatory mecha-
nisms underlying translation elongation dynamics
encoded in the mRNA sequence.

INTRODUCTION

Translation elongation is a crucial step of mRNA translation, in

which the ribosome scans the mRNA sequence and gradually

grows the nascent peptide chain by appending new amino acids

(Figure S1). Although numerous studies have shown that the

local elongation rate along an mRNA sequence varies a lot, the

underlying regulatory mechanisms of this phenomenon still

remain unclear (Brar and Weissman, 2015; Chaney and Clark,

2015; Ingolia, 2014, 2016; Quax et al., 2015). On the other

hand, translation elongation plays essential roles in diverse

aspects of protein biogenesis, such as differential expression,

cotranslational folding, covalent modification, and secretion

(Chaney and Clark, 2015; Ingolia, 2016; Quax et al., 2015). In

particular, ribosome stalling, which is described as ribosomes

piling up at specific positions onmRNAs, can lead to various bio-

logical consequences, e.g., mRNA degradation (Buchan and

Stansfield, 2007), modulation of protein expression (Tuller

et al., 2010), alteration of protein conformations (Tsai et al.,

2008), and pathological conditions (Ishimura et al., 2014). In

addition, the connection between the local elongation rate and

human health is increasingly emerging, which further under-

scores the necessity of a good understanding of the regulatory

mechanisms and functions of elongation dynamics (Sauna and

Kimchi-Sarfaty, 2011; Chaney and Clark, 2015).

In recent years, ribosome profiling has emerged as a high-

throughput sequencing-based approach to measure the ribo-

some occupancy on mRNAs at a translatome-wide level in vivo

(Ingolia et al., 2009, 2012; Brar and Weissman, 2015; Ingolia,

2014, 2016). With an accurate inference of the ribosome A site

(i.e., the entry position of aminoacyl-tRNA) in a ribosome-pro-

tected fragment (also referred to as the ribosome footprint,

�30 nucleotides), ribosome profiling provides a genome-wide

snapshot of translation elongation dynamics and offers a new

angle to estimate translation efficiency. Based on the currently

available large-scale studies involving ribosome profiling exper-

iments, several databases, e.g., GWIPS-viz (Michel et al., 2014)

and RPFdb (Xie et al., 2015), have been established to store

these profiling data.

Although a large amount of sequencing data have been pro-

duced by ribosome profiling, researchers are still challenged

by the complexity, heterogeneity, and insufficient coverage of

these data during the data analysis process (Brar andWeissman,

2015; Ingolia, 2014, 2016; Wang et al., 2016a, 2016b). Recently,

deep learning has become one of themost popular and powerful

techniques in the machine learning field (Hinton et al., 2006; Hin-

ton and Salakhutdinov, 2006). Its superiority over traditional
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machine learning models has been demonstrated in a wide

range of applications, such as speech recognition (Hinton

et al., 2012), image classification (Hinton and Salakhutdinov,

2006), and natural language processing (Collobert et al., 2011).

Specifically, deep learning has also been successfully applied

to analyze large-scale genomic data and uncover notable bio-

logical patterns (Zhang et al., 2015; Alipanahi et al., 2015; Xiong

et al., 2015; Zhou and Troyanskaya, 2015), such as the prediction

of protein-nucleotide binding (Alipanahi et al., 2015; Zhang et al.,

2015) and the effects of noncoding sequence variants (Zhou and

Troyanskaya, 2015). In this work, we propose a deep learning-

based framework, called ROSE (RibosOme Stalling Estimator),

to address the aforementioned challenges andmodel translation

elongation dynamics based on high-throughput ribosome

profiling data.

In ribosome profiling experiments, we expect to observe a

high ribosome density if ribosome stalling occurs reliably and

repeatedly at a specific codon position and causes a ‘‘traffic

jam’’ in translation there. Thus, in general, ribosome stalling

events can be inferred from ribosome footprint density after

normalization, and they have been widely believed to negatively

correlate with the local elongation rates (Ingolia, 2014, 2016; Brar

and Weissman, 2015). Our framework ROSE cast the ribosome

stallingmodeling problem into a classification task and predicted

ribosome stalling using a deep convolutional neural network

(CNN) with encoded sequence features. ROSE was trained in a

supervised manner based on both human and yeast ribosome

profiling data to revisit evolutionarily conserved observations

about ribosome stalling.

RESULTS

Designing and Training ROSE
We proposed a deep learning-based framework, called

RibosOme Stalling Estimator (ROSE), to analyze large-scale

ribosome profiling data and study the contextual regulation of

ribosome stalling and its potential functions in protein biogenesis

(Figure 1A). Unlike previous work that characterized translation

elongation dynamics using stochastic simulation approaches

(Gritsenko et al., 2015; Pop et al., 2014; Reuveni et al., 2011)

and density estimation (Liu and Song, 2016; O’Connor et al.,

2016), ROSE formalized themodeling problem as a classification

task, in which the resulting prediction score can be used to mea-

sure the probability of a ribosome stalling event. In this classifica-

tion framework, codon positions with normalized ribosome foot-

print densities beyond two standard deviations (SDs) of the

density distribution were defined as positive samples (fore-

ground), which represented the occurrences of ribosome stall-

ing, while the remaining sites were regarded as negative samples

(background; Figure S2). This threshold was selected to best

correlate the normalized reads with the model predictions in a

separate validation dataset (Figure S3 and STAR Methods).

We assumed that a ribosome stalling event is primarily deter-

mined by its surrounding sequence. The codon position of inter-

est, i.e., the ribosome A site, was first extended both upward and

downward by 30 codons, which yielded the codon sequence

profile of a putative stalling event. We then encoded this

sequence and fed it into a deep convolutional neural network

(CNN) to learn the complex relations between ribosome stalling

and its contextual features (Figure 1B and STAR Methods). We

called the prediction score directly output by the CNN the inter-

genic ribosome stalling score, also termed interRSS (STAR

Methods). The name ‘‘interRSS’’ came from the fact that all the

scores along the genome were calculated by a universal model

and can be compared intergenetically/globally under the same

criterion. To further eliminate the possible bias among different

genes and facilitate the study on the interplay between intra-

genic/local factors (e.g., the binding of the signal recognition par-

ticle [SRP] on transmembrane segments) and elongation dy-

namics, we also normalized interRSS within each gene and

obtained a local index, called the intragenic ribosome stalling

score, also termed intraRSS (STAR Methods). Here we followed

the same terminologies ‘‘intergenic’’ and ‘‘intragenic’’ from Quax

et al. (2015). We collectively called both interRSS and intraRSS

the ribosome stalling score (RSS). In principle, the RSS can be

considered as an estimate of the likelihood of ribosome stalling.

A higher RSS generally indicates a higher predicted probability of

ribosome stalling at the corresponding codon position.

ROSE relied on a number of motif detectors (i.e., convolution

operators) to scan the input sequence and integrated those stall-

ing-relevant motifs to capture the intrinsic contextual features of

ribosome stalling (Figure 1B and STAR Methods). Unlike previ-

ous CNN architectures used for analyzing biological data (Zhou

and Troyanskaya, 2015; Alipanahi et al., 2015), our new

CNN framework included multiple parallel convolution-pooling

modules, which can not only significantly reduce the model

complexity but also alleviate the potential overfitting problem

(STAR Methods). After tuning the model hyperparameters using

an efficient automatic strategy (STAR Methods), the error back-

propagation algorithmwas used to learn the network parameters

of the CNN model (Rumelhart et al., 1986). We also deployed

several optimization techniques, including L2-regularization

(Bengio, 2012), dropout (Srivastava et al., 2014; Bengio, 2012),

and early stopping (Bengio, 2012), to further overcome the over-

fitting problem. To further boost the prediction performance,

we also implemented an ensemble version of ROSE (termed

eROSE), in which 64 CNNs were initialized and trained indepen-

dently, and then the average result was used as the final predic-

tion score (STAR Methods).

ROSE Accurately Predicts Ribosome Stalling
In this study, we mainly focused on eukaryotic cells, including

human and yeast cells. We first used two datasets downloaded

from GWIPS-viz (Michel et al., 2014), including a human dataset

of lymphoblastoid cell lines (LCLs) (denoted by Battle15) (Battle

et al., 2015) and a yeast dataset of Saccharomyces cerevisiae

(denoted by Pop14) (Pop et al., 2014) to train our deep learning

model and evaluate its prediction performance. In particular,

after normalizing the ribosome profiling data and determining

the threshold (i.e., m + 2s; see STAR Methods for more details),

the codon sites with normalized footprint densities beyond the

threshold were labeled as positive samples, while an equal num-

ber of codon sites randomly chosen from the remaining were

labeled as negative samples, which resulted in 109,770 and

20,902 samples for Battle15 and Pop14, respectively. For each

dataset, we randomly selected 90% of the samples as training

data and the remaining 10% as test data. The final performance

of our model was mainly reported based on the test data.
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When compared with a conventional prediction model,

called gkm-SVM (Lee et al., 2015; Ghandi et al., 2014),

ROSE showed superior performances on both human and

yeast datasets with an increase in the area under the receiver

operating characteristic curve (AUROC) by up to 18.4% (Fig-

ures 1A and 2B). In particular, the ensemble version of

ROSE (i.e., eROSE) consistently had superior performance

compared with the single version (i.e., sROSE). To validate

the effectiveness of our parallel CNN architecture, we also im-

plemented three sequential architectures that stacked two

convolution-pooling modules with different kernel sizes in

the convolutional layers before the output layer and found

that sROSE greatly outperformed those sequential CNNs

(Figure 2C).

A

B

Figure 1. The ROSE Pipeline and the Convolutional Neural Network (CNN) Model

(A) Schematic overview of the ROSE pipeline. The codon sites with normalized ribosome footprint densities beyond two SDs are regarded as positive samples,

which represent the ribosome stalling positions, to train a deepCNNmodel. Then the sequence profiles of individual codon sites along the genome are fed into the

trained CNN to compute the distribution of ribosome stalling, which can be further used to study the potential factors affecting ribosome stalling and analyze the

genome-wide landscape of translation elongation dynamics.

(B) Schematic illustration of the CNN model used in the ROSE pipeline. More details can be found in the main text.

214 Cell Systems 5, 212–220, September 27, 2017



We further performed multiple cross-study analyses to

examine the generalizability of ROSE over five other ribosome

profiling datasets with different experimental conditions, e.g.,

cell lines/strains and cycloheximide treatment (STAR Methods).

Notably, ROSE showed only a moderate decrease in AUROC

scores for both human and yeast, when using test datasets

from other studies (Figure 2D), or even when the test samples

came from genes that were not sufficiently covered (<60%) in

the training dataset (Figures 2D and 2E).

It has been widely observed that the first 30–50 codons of a

coding sequence are often enriched with rare codons, and create

a ‘‘ramp’’ to reduce the elongation rate during the initial translation

elongation process (Tuller et al., 2010; Tuller and Zur, 2014). To

focus solely on the elongation process and remove the possible

biases introduced by the ramp regions, here we excluded

all the reads of these regions, i.e., the first 50 codons at the
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Figure 2. Performance Evaluation of ROSE

(A and B) The receiver operating characteristic

(ROC) curves and the area under the corresponding

ROC curve (AUROC) scores on the human

(Battle15) and yeast (Pop14) test datasets,

respectively.

(C) Comparison of AUROCs between parallel

and sequential CNN architectures. ‘‘sROSE’’ and

‘‘eROSE’’ stand for the ROSE frameworks with one

(single) and 64 (ensemble) CNNs, respectively.

conv1, conv2, and conv3 represent the convolu-

tional-pooling modules with kernel sizes of the con-

volutional layers corresponding to the short, me-

dium, and long ranges used, respectively.3 denotes

the stacking operation in the sequential architecture.

(D) The ROC curves and the corresponding

AUROC scores of the cross-study tests on addi-

tional human (Stumpf13 G1, M, and S) and yeast

(Brar12 and Young15) datasets. The ‘‘Brar12 non-

overlapping dataset’’ includes 1,748 genes with

sufficient (over 60%) ribosome profiling coverage

in the Brar12 dataset but not in the Pop14 dataset.

(E) The Venn diagram of the three yeast datasets

regarding sufficiently covered genes.

(F) The ROC curves and the corresponding AUROC

scores on the ramp regions.

50 ends of the coding sequences, from

our training data. Intriguingly, even without

any training data from ramp regions, ROSE

can still successfully predict ribosome

stalling in these regions, with the AUROC

scores above 83.0% (Figure 2F).

To better evaluate the performance of

ROSE, we also provided precision-recall

curves, the area under the precision-recall

curve, and the accuracy/precision/recall

scores for all the tests based on different

thresholds (Figure S4 and Table S1).

RSS Associates with Putative
Regulatory Factors of Ribosome
Stalling
With stringent normalization procedures

as well as superior prediction perfor-

mance, ROSE enables one to systematically investigate diverse

factors that may associate with ribosome stalling (STAR

Methods). Here, we mainly focused on codon usage bias,

tRNA adaptation, codon co-occurrence bias, proline codons,

mRNA N6-methyladenosine modification, mRNA secondary

structure, protein-nucleotide binding, and positively charged

amino acids, and studied how they correlate with the intraRSS

(STAR Methods, Figures 3, S5, S6, S7, S8 and Table S2) as

well as their predictive power for ribosome stalling (Figure S9).

In addition to revisiting previously accepted conclusions, we

also proposed several novel hypotheses based on the prediction

results of ROSE, including a dose-dependent stalling tendency

associated with proline residues (Figure 3C) and a negative cor-

relation between ribosome stalling and codon co-occurrence

(Figures 3A and 3B). We also carried out two negative control

tests on a set of randomly selected codons and another set of
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randomly selected adenine-containing codon sites, in which the

statistical comparisons with the background were insignificant

(Figures 3A, 3B, and S5C), to further support the biological rele-

vance of our investigations.

RSS Correlates with Protein Secondary Structure
Here, we sought to probe the relations between the protein sec-

ondary structure elements (SSEs) and ribosome stalling based

on the RSS computed by ROSE. In particular, we first derived

a set of non-redundant protein chains across human and yeast

genomes from the PDB (Madej et al., 2012) (STAR Methods).

We then investigated intraRSS landscapes of different SSE pat-

terns, including a single chain of a helix (H), b strand (B), or

random coil (C), and transitions between different SSEs.

We first obtained the average position-specific intraRSSes of

each SSE pattern of interest with a specific window size (STAR

Methods). Overall, we found that with a window size of six, all

the tendencies of the intraRSS change for individual SSE pat-

terns were species independent (Figures 4A and 4B; Spearman

correlation coefficient R > 0.6). The conclusions were also

confirmed with a window size of ten to eliminate the possible

bias caused by the variation of window size. We further

compared the intraRSSes of the structured (i.e., a helix or

b strand) and random coil residues at the ribosome P sites.

Consistent with the previous report that frequent codons were

usually enriched in the structured regions while depleted in the

random coils (Pechmann and Frydman, 2013), our results

showed a significantly higher stalling probability in the coils

than in the a helix or b strand regions (Figure 4C; p < 10�25 by

one-sided Wilcoxon rank-sum test). Furthermore, we examined

the tendency of the intraRSS change along a protein secondary

structure fragment. As expected, the intraRSS landscape

showed a lower chance of stalling in the middle of a structured

region but a higher chance in the middle of a coil region

compared with the corresponding flanking regions on both sides

(Figures 4A and S10A). This behavior was reminiscent of another

previous study on the relations between codon frequency and

protein secondary structure, in which the tRNA adaptation index

(i.e., tAI) was mainly used as an indicator of the elongation rate

(Saunders and Deane, 2010). Our intraRSS landscape showed

a similar but more symmetrical trend to the previous finding

that the transitions from structured to coil regions generally

accompanied an increase in the stalling probability on the transi-

tion boundaries (Figures 4B and S10B). In addition, the opposite

transitions (i.e., from coil to structured regions) exhibited roughly

symmetrical trends in the change of intraRSS (Figures 4B

and S10B).

RSS Associates with SRP Recognition
Next, we investigated whether the RSS landscape can reflect the

elongation process that regulates the coupling between the pro-

tein translation and translocation activities. We were particularly

interested in the interplay between the predicted likelihood of

translational pause and the SRP binding of transmembrane

(TM) segments (Figure 4D). We expected that our model would

effectively capture the ribosome stalling events encoded by

the heterogeneity of the amino acid composition in and around

the TM domains.

We downloaded all the available TM protein sequences of

human and yeast as well as the corresponding TM domain

A B

C D

Figure 3. A Comprehensive Reexamination

on the Relations between Diverse Putative

Regulatory Factors and Ribosome Stalling

Using ROSE

(A and B) Comparisons of intraRSS between the

codon sites enriched with individual factors and

the background for human and yeast, respectively.

Data labels: negative control (randomly selected

10,000 codon sites), cAI (codon adaptation

index), tAI (tRNA adaptation index), cCI (codon co-

occurrence index), and %MinMax score (the

codon rareness measurement proposed in Clarke

and Clark, 2008).

(C) Comparisons of intraRSS between the single-

peptide pattern of proline (i.e., XPX) and the mul-

tiple-peptide patterns of proline, including dipep-

tide (i.e., XPP and PPX) and tripeptide (i.e., PPP),

where ‘‘P’’ and ‘‘X’’ stand for proline and any non-

proline amino acid, respectively.

(D) A schematic illustration of the m6Amodification

of a codon (e.g., AAA) to delay tRNA accommo-

dation (denoted by the purple star) during trans-

lation elongation.

*5 3 10�25 < p < 1 3 10�2; **5 3 10�50 < p % 5 3

10�25; ***5 3 10�100 < p % 5 3 10�50; +p % 5 3

10�100; one-sided Wilcoxon rank-sum test. Note

that here it is not necessary that the median

was zero for the ‘‘Background’’ column, as the

intraRSS was normalized within individual genes

rather than along the genome. Also, the extremely

small p values were partially due to the large

sample size (N = 10,000).
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information from the Uniprot database (UniProt Consortium,

2015) (STAR Methods). We first focused on the yeast TM

proteins, whose translation had been previously characterized

both computationally and experimentally (Pechmann et al.,

2014). The intraRSS landscape computed by ROSE captured

two major stalling events during the TM protein translation

process (Figure 4E). The first stalling event after the TM start

occurred right at the end of the TM segment, where the

A

B

C

D

E

Figure 4. The Intragenic RSS Landscapes Reveal that Ribosome Stalling Associates with Protein Secondary Structure and the SRP Binding

of Transmembrane (TM) Segments

(A) The intraRSS landscapes of a helix, b strand, and random coil regions.

(B) The intraRSS landscapes of the secondary structure element (SSE) transition regions. ‘‘H’’, ‘‘E’’ and ‘‘C’’ stand for a helix, b strand, and random coil,

respectively, while ‘‘X’’ represents any SSE type in the flanking regions on both sides. Polynomial curve fitting of degree four was used to show the general

intraRSS tendency. The Spearman correlation coefficients between human and yeast intraRSS tendencies were calculated.

(C) The overall comparisons of intraRSS between the structured (i.e., a helix and b strand) and random coil residues. **5 3 10�50 < p %5 3 10�25; ***5 3

10�100 < p % 5 3 10�50; one-sided Wilcoxon rank-sum test.

(D) A schematic illustration of the SRP binding of a TM segment during translation elongation.

(E) Comparison of intraRSS tendency between the TM segments with (SRP+) and without SRP binding (SRP�) in yeast, in which all the protein sequences were

aligned with regard to the start of the TM segment whose position was indexed as zero. The yellow rectangle covers the TM segment, while the gray rectangles

represent two intraRSS peaks downstream of the TM segment. The intraRSS peak marked with the blue star (i.e., positions from +50 to +70) was significantly

diminished (p = 1.5 3 10�3 by one-sided Wilcoxon rank-sum test).
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structured TM segment (mostly a helix) transits to amore flexible

intracellular region. This result agreed well with our previous

conclusion about the relations between RSS and protein sec-

ondary structure (Figures 4B and S10B). The other intraRSS

peak, spanning positions from +50 to +70, probably represented

intrinsic stalling to promote nascent-chain recognition by SRP,

which was consistent with a previous report (Pechmann et al.,

2014). Indeed, a TM segment generally contains �20 residues,

and the length of the ribosome exit tunnel is �30 residues.

Thus, position +50 is approximately the place where the trans-

lated TM segment emerges from the exit tunnel and is bound

by SRP. We also observed that the second peak was signifi-

cantly diminished (Figure 4E; p = 1.5 3 10�3 by one-sided

Wilcoxon rank-sum test) in the TM segments that were not asso-

ciated with SRP binding (termed SRP�) (Alamo et al., 2011),

which further validated our findings. The corresponding analyses

for the end-aligned yeast TM proteins and human TM proteins

can also be found in Figure S11.

DISCUSSION

In this study, we proposed a deep learning-based framework to

predict the likelihood of ribosome stalling by integrating the un-

derlying sequence features. To the best of our knowledge, our

work is the first attempt to exploit the deep learning technique

to predict ribosome stalling and model translation elongation

dynamics based on large-scale ribosome profiling data. The

detailed rationale for the application of deep learning in our prob-

lem setting can be found in STAR Methods.

Similar to many other high-throughput sequencing tech-

niques, the current analysis of ribosome profiling data is

also faced with several technical challenges, e.g., aligning

reads across exon-exon junctions, ambiguous mapping, and

sequencing bias (Ingolia et al., 2012). In this study, we relied

on several widely accepted data preprocessing approaches,

e.g., RNA-seq unified mapper (RUM) (Grant et al., 2011) in the

alignment of splicing junction reads in GWIPS-viz (Michel et al.,

2014) and the stringent normalization procedure proposed in Art-

ieri and Fraser (2014), to at least partially remove the bias caused

by these problems. Together with the accurate and robust pre-

diction performance of ROSE as well as the physiologically rele-

vant phenomena it detected, it is unlikely that the prediction of

ROSE will suffer from the technical bias problem.

Our current study is a demonstration of applying ROSE in

several specific scenarios in which ribosome stalling has been

known to lead to significant physiological consequences. We

believe that our ROSE framework will offer more insights into

other important translation-related phenomenawith the incorpo-

ration of more ribosome profiling data and more sophisticated

problem formulation in the future.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d METHOD DETAILS

B Data Preprocessing and Normalization

B Model Design

B Model Training and Model Selection

B Rationales for the Application of Deep Learning in Our

Problem Setting

B Implemrentation of gkm-SVM

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Statistical Analysis on the Associations between

Diverse Putative Factors and RSS

B Quantification of Diverse Putative Factors Related to

Ribosome Stalling

B Statistical Analysis on the Associations between Pro-

tein Secondary Structure and RSS

B Statistical Analysis on the Association between Trans-

membrane Domains and RSS
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KEY RESOURCES TABLE
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Further information and requests for resource sharing may be directed to and will be fulfilled by Lead Contact Jianyang Zeng

(zengjy321@tsinghua.edu.cn).

METHOD DETAILS

Data Preprocessing and Normalization
All ribosome profiling datasets in this study were downloaded from GWIPS-viz (Michel et al., 2014), in which abundant ribosome

profiling data have been maintained and preprocessed as in other widely accepted pipelines (Ingolia et al., 2012). In addition to a

human dataset of lymphoblastoid cell lines (LCLs) (denoted by Battle15) (Battle et al., 2015) and a yeast dataset of S. cerevisiae (de-

noted by Pop14) (Pop et al., 2014), we used other five additional datasets for cross-study validation, including three human datasets

from different cell cycle stages (i.e., G1, S and M phases) of HeLa cells (Stumpf et al., 2013) (denoted by Stumpf13 G1, S and M,

respectively) and two yeast datasets of strain SK1 (Brar et al., 2012) and starin BY4741 (Young et al., 2015) (denoted by Brar12

and Young15, respectively).

Here we applied the normalization method introduced in (Artieri and Fraser, 2014) to remove the technical and experimental biases

from the ribosome profiling data. More specifically, after mapping the ribosome profiling and mRNA-seq reads to the reference

genome, their codon-level reads were first scaled by the mean coverage level within each gene, which canceled out the coverage

differences among genes. Next, the scaled ribosome profiling reads were divided by the scaled mRNA-seq reads in the correspond-

ing locations to eliminate the shared biases between these two fractions. After that, a logarithm operation was further performed to

yield the final normalized ribosome footprint density (Figure S2). Since some protein-coding genes can be poorly sequenced due to

the issue of sequencing depth and the influence of differential expression, which may introduce unexpected biases to our analysis,

here those normalized ribosome footprint densities from genes with sequencing coverage (i.e., the number of codon sites with both

non-zero ribosome profiling and mRNA-seq reads divided by the total number of codons in the gene) less than 60% were excluded

from our training and test datasets. Note that such a coverage cutoff was also used in (Sabi and Tuller, 2015), in which robustness of

this cutoff has been demonstrated in the analysis of ribosome profiling data.

To label samples for training a binary classifier to detect ribosome stalling events, we first tested several labeling thresholds based

on the standard deviation of the normalized ribosome footprint density distribution. In particular, we considered four possible thresh-

olds, including m, m+s, m+2s and m+3s, where m and s represented the mean and the standard deviation of the normalized footprint

density distribution, respectively. For each possible choice of threshold, those codon positions with normalized densities beyond the

threshold were labeled as the ribosome stalling positions (i.e., positive samples), while the remaining were regarded as the back-

ground (i.e., negative samples). Then we trained four preliminary CNNmodels based on the datasets derived from these four thresh-

olds, respectively. We also constructed a separate validation dataset that contained an equal number of samples randomly selected

from six bins, including (�N,m�2s), [m�2s,m�s), [m�s,m), [m,m+s), [m+s,m+2s) and [m+2s,N). The basic principle of choosing the

optimal threshold was the expectation that our model with the best threshold should yield predictions best correlated with their cor-

responding experimentally observed values in the independent validation dataset. We performed such a test for both human and

yeast datasets, from which m+2s was determined as our final threshold (Figure S3).

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Human ribo-seq data (LCLs) Battle et al., 2015 GEO GSE61742

Human ribo-seq data (HeLa) Stumpf et al., 2013 NCBI SRA099816

Yeast ribo-seq data (288C) Pop et al., 2014 GEO GSE63789

Yeast ribo-seq data (SK1) Brar et al., 2012 GEO GSE34082

Yeast ribo-seq data (BY4741) Young et al., 2015 GEO GSE69414

Software and Algorithms

ROSE This paper v1.0

gkm-SVM Ghandi et al., 2014 v1.3

Other

GWIPS-viz Database Michel et al., 2014 http://gwips.ucc.ie
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After the above operations, the determined threshold was used to label samples, i.e., the codon sites with normalized footprint

densities beyond the threshold were labeled as positive (i.e., foreground) samples, while the same number of codon sites

randomly chosen from the remaining were labeled as negative (i.e., background) samples, which results in 109,770 and 20,902

samples for Battle15 and Pop14, respectively. For each dataset, we randomly selected 90% of the samples as training data

and the remaining 10% as test data. The final performance of our model was mainly reported based on the test data. Note

that here we excluded all the reads of the ramp regions (i.e., the first 50 codons at the 50 ends of coding sequences) from the

training data. For cross study validation, the ROC curves were obtained by applying the trained eROSE of the specific species

to the validation data.

Model Design
A convolutional neural network (CNN) is a specific type of neural network in deep learning, which has been widely used in common

data science fields, such as computer vision (LeCun et al., 1998) and natural language processing (Kim, 2014). In particular, CNNs

have also been used tomodel biological sequence data, e.g., the predictions of protein-nucleotide binding (Alipanahi et al., 2015) and

effects of noncoding variants (Zhou and Troyanskaya, 2015). Generally speaking, a CNN is comprised of multiple local motif detec-

tors (i.e., convolution operators) that are invariant with certain transformations, such as translation and rotation, and subsampling

(i.e., pooling operators) for dimension reduction and efficient training. To further increase the learning capacity of the network,

many layers of these operators are often stacked together, and then followed by several fully-connected layers, and finally the output

layer.

In our framework, we first encode the input codon sequence using the one-hot encoding technique (Pedregosa et al., 2011), that is,

themth codon type is encoded as a binary vector of length 64, in which themth position is one while the others are zeros, after index-

ing all 64 codon types. Then the encoded information is fed into one convolutional layer and one pooling layer to learn the hidden

features. In the convolutional layer, several one-dimensional convolution operations are performed over the 64-channel input

data, in which each channel corresponds to one dimension of the input vector, and the weight matrix (i.e., kernel) can be regarded

as the position weight matrix (PWM). More specifically, given a codon sequence s=(c1,.,cn) and the corresponding one-hot repre-

sentation S, where n stands for the input length (here n=61 as we extend the codon site of interest on both sides by 30 codons) and ci
represents the ith codon in the sequence, the convolutional layer computes X=conv(S), i.e.,

Xi;k =
Xm�1

j = 0

X64
l = 1

Wk;j;lSi + j;l;

where 1%i%n�m+1, 1%k%d,m is the kernel size, and d is the kernel number. Next, the rectified linear activation function (ReLU) is

used to imitate the neuron activation, that is, the output of the convolutional layer is further processed by the activation function

Y=ReLU(X), where

ReLUðxÞ=
�
x if xR0;
0 if x<0:

After convolution and rectification, we reduce the dimension of matrix Y using the max pooling operation, which computes the

maximum value within a scanning window of size three and step size two. More specifically, given the upstream input Y, the max

pooling operation computes Z=pool(Y), i.e.,

Zi;k =max
�
Yj;k ;Yðj + 1Þ;k ;.;Yðj +m�1Þ;k

�
;

where i is the index of the output position, j is the index of the start input position, k is the index of the kernel, andm is the size of the

scanning window during the pooling operation (here we choose m=3).

To enable the local motif detectors to scan sequence motifs in different ranges synchronously, while not increasing the model

complexity too much, here we propose a parallel architecture, which includes three kernels of different sizes, corresponding to

short (5–7), mediate (8–9) and long (10–13) ranges, respectively. The outputs of these three kinds of convolution operators are

further rectified and then subsampled independently and in parallel, and finally concatenated into a unified representation U.

To calculate the final probability of a ribosome stalling event, the unified representation is directly fed to a sigmoid layer, which

computes

PrfRibosome stallingg= sigmðUÞ= 1

1+ expð�WUÞ ;

where W is the weight matrix of the sigmoid layer.

Note that the sequential (i.e., layer-wise) architecture in conventional CNNs, in which several convolutional and pooling layers are

stacked together, can also detect motifs in different ranges. The reason that our parallel architecture can significantly reduce the

model complexity comes from the fact that the parallelism simulates the SUM operation, e.g., (a1+a2)+(b1+b2), while the sequentiality

mimics the PRODUCT operation, e.g., (a1+a2)3(b1+b2). Obviously, the computational complexity of the latter is much higher than that

of the former. Our network reduction can be useful for relieving the potential overfitting problem during the training process. We note

that a similar idea has also been proposed in (Kim, 2014). However, the pooling operation in (Kim, 2014) is carried out over the whole
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convolutional layer without any window restriction, which is quite different from ours. In summary, a complete CNN in our deep

learning framework can be formulated as

pðsÞ= sigm
�
concati =1;2;3

�
pooli

�
ReLUi

�
conviðencodeðsÞÞ����;

where i represents the kernel index in the parallel architecture, and encode(,), conv(,), ReLU(,), pool(,), concat(,) and sigm(,) repre-
sent the one-hot encoding, convolution, ReLU, max pooling, concatenation and sigmoid operations, respectively.

The above calculated probability p(s) is defined as the intergenic ribosome stalling score (also termed interRSS), which measures

the likelihood of ribosome stalling at a codon position. To eliminate the interRSS bias among different genes, we further define the

intragenic ribosome stalling score (also termed intraRSS) as follows,

intraRSSðpositionjgeneÞ= log

�
interRSSðpositionÞ

meanðgeneÞ
�
;

where interRSS(position) represents the interRSS of the codon position of interest and mean(gene) stands for the mean interRSS of

the corresponding gene. When computing mean(gene), we exclude those codon positions in the ramp regions (i.e., the first 50 co-

dons at the 50 ends of coding sequences).

Model Training and Model Selection
Given the training samples {(si,yi)}i, the loss function of our model is defined as the sum of the negative log likelihoods (NLLs), i.e.,X

i

NLLi = �
X
i

logðyipðsiÞ+ ð1� yiÞð1� pðsiÞÞÞ;

where si is the input codon sequence and yi is the true label. To train the CNN, the standard batch gradient descent method with the

error backpropagation algorithm is performed (Rumelhart et al., 1986). To further optimize the training procedure, we also apply

several training strategies, including the mini-batch and momentum techniques (Bengio, 2012). In addition, we use the Adam algo-

rithm for stochastic optimization to achieve an adaptive moment estimation (Kingma and Ba, 2014). To further overcome the over-

fitting issue, we also apply several regularization techniques, including L2-regularization-based weight decay (Bengio, 2012), dropout

(Srivastava et al., 2014) and early stopping (Bengio, 2012).

The network structure and the aforementioned optimization techniques introduce a number of hyperparameters to our framework,

such as the kernel size, kernel number, base learning rate, weight decay coefficient and the max number of training iterations. It is

important to perform proper hyperparameter calibration and model selection for accurate modeling. Although we can achieve this

goal using the conventional cross-validation strategies, it is generally time-consuming to test all possible combinations of these hy-

perparameters. To conquer this difficulty, here we propose a one-waymodel selection strategy for automatic and efficient hyperpara-

meter calibration. In this strategy, we first arbitrarily choose the initial values of the hyperparameters from a candidate set. Then, we

separate the hyperparameters into two groups, including those describing the network structure (denoted by H1), such as the kernel

size and the kernel number, and those describing the optimization procedure (denoted byH2), such as the base learning rate and the

weight decay coefficient. Next, by fixing the values of the hyperparameters in H2, we calibrate those hyperparameters in H1 using a

three-fold cross-validation (CV) procedure, and determine their optimal values that achieve the best CV performance. Similarly, the

hyperparameters in H2 are also calibrated via the three-fold CV procedure after fixing the previously determined values of the hyper-

parameters in H1. The final values of all hyperparameters of ROSE are provided in Table S3. The ROC curves and AUROC scores of

the CNNs with calibrated hyperparameters are shown in Figure S12 for the Battle15 and Pop14 datasets, respectively. Though we

can carry out this procedure for more iterations (i.e., multi-way), our test results show that the one-way implementation generally

yields satisfying prediction performance in this study.

After hyperparameter calibration and model selection, we train the final ROSE model using the whole training dataset. Due to the

nature of non-convex optimization, random weight initialization may affect the search result of the gradient descent algorithm. Here,

we use the Xavier initialization algorithm to automatically determine the initial scales of weights according to the number of input and

output neurons (Glorot and Bengio, 2010). To account for the potential initialization bias and further boost the prediction perfor-

mance, we also implement an ensemble version of ROSE (termed eROSE), in which 64 CNNs are trained independently and then

combined together to compute the final prediction score, i.e.,

pðsÞ= 1

64

X64
i = 1

piðsÞ;

in which pi(s) represents the probability calculated by the ith CNN.

Our implementation of ROSE depends on the Caffe library (Jia et al., 2014), and the Tesla K20c GPUs are used to speed up the

training process.

Rationales for the Application of Deep Learning in Our Problem Setting
The application of deep learning in our problem setting is mainly based on the following rationales. First, we assumed that

ribosome stalling can be characterized by its surrounding context and sequence motifs that encode different factors affecting
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ribosome stalling (Chaney and Clark, 2015; Ingolia, 2016; Quax et al., 2015). Here, we used the convolution layers, acting as motif

detectors, to model and extract the complex nonlinear sequence features. The convolutional neural networks (CNN) have been

successfully applied to model various biological sequence features in previous studies, showing superior prediction performance

to conventional machine learning methods (Zhang et al., 2015; Alipanahi et al., 2015; Xiong et al., 2015; Zhou and Troyanskaya,

2015). In fact, the multi-layer neural networks have been shown to be a universal estimator of functions (Bengio, 2009), which

means that for any function, there exists a neural network that can estimate its value in any accuracy. In addition, the multi-layer

convolution can extract the input hierarchical features automatically without any artificial feature engineering and facilitate the

binary classification/prediction in the final layer (Bengio, 2009). Although how a deep neural network automatically learns the in-

termediate features/representations is still an open question in the machine learning field, numerous empirical studies have

demonstrated its effectiveness in various learning tasks (Bengio, 2009; Bengio et al., 2013). In general, with the abundant amount

of training data, a deep neural network can often yield superior predictive power over conventional learning approaches (e.g.,

SVM). Based on these reasonings, as well as the fact that translation elongation dynamics is generally affected by a complicated

interplay between heterogenous factors, we believe that the deep convolutional neural network is a proper choice to predict ribo-

some stalling from the large-scale ribosome profiling data.

Implemrentation of gkm-SVM
To conduct a pair comparison between ROSE and gkm-SVM, the length of the input mRNA sequence to gkm-SVM was also set to

183, that is, the codon position of interest was extended both upward and downward by 90 nucleotides (30 codons). Then gkm-SVM

computed the gapped k-mer features of the input sequences to classify positive and negative samples (Lee et al., 2015; Ghandi et al.,

2014). All the parameters of gkm-SVM were set as default values.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analysis on the Associations between Diverse Putative Factors and RSS
Diverse factors, such as tRNA adaptation and mRNA secondary structure, can interplay with each other to affect the ribosome

stalling tendency. To investigate whether a factor potentially correlates with ribosome stalling, we first identified those codon

sites along the genome that were enriched with this factor, and then checked whether the predicted (intra)RSSes of these po-

sitions were significantly different from those of the background. In particular, given a factor, such as tRNA adaptation, we first

computed its quantity (e.g., tAI) across the genome and then chose those codon sites whose quantities were in the top N list

(N was set to 10,000 in our study). After that, we ran the Wilcoxon rank sum test to compare the (intra)RSSes of the chosen sites

to those of a background dataset, which was generated by randomly selecting 10,000 ribosome occupancy sites from the

genome. If the (intra)RSSes of the codon sites enriched with the factor and the background were significantly different, we

said this factor correlates with ribosome stalling. In addition, we probed the correlations between different factors based on

the background dataset, and found little correlation between these factors that we were interested in, except for cAI, %MinMax

and tAI (Table S4).

Since ROSE can also output a binary annotation for each codon site of interest, we further analyzed the binary annotations of

those codon sites enriched with several main regulatory factors, including cAI, %MinMax, cCI and proline codons. More spe-

cifically, given a fixed threshold (which was set to be 0.5 in this study), we computed the distributions of the binary labels

‘‘1’’ (i.e., interRSSR0.5) and ‘‘0’’ (i.e., interRSS<0.5) output by ROSE for the top N enriched sites and N randomly selected

genomic loci (here N was still set to be 10,000), respectively. The comparison between these two distributions of binary outputs

was carried out using the chi-square test, yielding consistent conclusions with those derived from the probability outputs

(Figure S8).

Quantification of Diverse Putative Factors Related to Ribosome Stalling
In this study, we mainly focused on codon usage bias, tRNA adaptation, codon cooccurrence bias, proline codons, mRNA N6-meth-

yladenosine modification, mRNA secondary structure, protein-nucleotide binding and positively-charged amino acids, and investi-

gated how they associate with the intraRSS.

For codon usage bias, we applied several proposed metrics for codon frequency estimation, such as the codon adaptation index

(cAI) (Sharp and Li, 1987) and the%MinMax score (Clarke and Clark, 2008). In particular, we calculated cAI for both ribosome A- and

P-sites, and %MinMax for the local region around the ribosome A-site (i.e., five codons both upstream and downstream from the

A-site). Also, from a tRNA perspective, the tRNA adaptation index (tAI) has been proposed to consider both the tRNA concentration

(approximated by the copy number of the corresponding tRNA gene) and the strength of codon-anticodon pairing (computed ac-

cording to the Crick wobble rules) (Reis et al., 2004). Again, to facilitate the genome wide statistical analysis, the tAI values for

both ribosome A- and P-sites for each codon across the genome were compared.

The codon cooccurrence bias, i.e., the non-uniform distribution of synonymous codon orders, was also reported to affect trans-

lation elongation dynamics (Cannarozzi et al., 2010; Quax et al., 2015). To further examine this factor, we first defined a new metric,

called the codon cooccurrence index (cCI), which measures the autocorrelation (i.e., reuseness) of isoaccepting codons in a local

region. Precisely speaking, given the codon of interest at position i, we only considered its local region [i�w,i+w], where w stands

for the window size. For each codon at position p˛[i�w,i+w], we checked whether it had an isoaccepting codon in the upstream
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region [i�u,p�1]. We used notation isop to represent this indicator, that is, isop=1 if the indicator holds true, and isop=0 otherwise.

Thus, the cCI at position i was defined as

cCIi =

P
p˛½i�w;i +w�isop

2w
;

in which we set w=5 and u=30.

The unique structure of proline side chain is generally associatedwith a relatively low efficiency in its peptide bond formation, which

may slow down translation elongation (Woolstenhulme et al., 2013; Artieri and Fraser, 2014; Doerfel et al., 2013; Gardin et al., 2014;

Wohlgemuth et al., 2008; Ude et al., 2013; Peil et al., 2013; Gutierrez et al., 2013). Several studies have confirmed the relatively low

translation elongation rates at proline codons (Artieri and Fraser, 2014; Gardin et al., 2014). Here we performed an extended study on

the relation between proline codons and ribosome stalling using ROSE. In particular, four peptide patterns of proline were investi-

gated, including XPX, XPP, PPX and PPP, in which the three positions correspond to the ribosome E-sites, P-sites and A-sites,

respectively, and ‘‘P’’ and ‘‘X’’ represent proline and non-proline amino acids, respectively.

N6-methyladenosine is probably the most prevalent post-transcriptional modification in mRNAs and plays vital roles in regulating

mRNA stability and translation efficiency (Wang et al., 2014, 2015). Recently, Choi et al. elucidated that the m6A-modified codons at

the ribosome A-sites can reduce the translation elongation rate in E.coli (Choi et al., 2016). We used ROSE to test this hypothesis

based on the translatome-wide m6A mapping obtained from the known single-nucleotide resolution sequencing data, including

two human datasets (denoted by Linder15 (Linder et al., 2015) and Ke15 (Ke et al., 2015), respectively) and one yeast dataset (de-

noted by Schwartz13 (Schwartz et al., 2013)). To ensure that the statistical analysis result did not result from the underlying adenine

nucleotides in the codon sites of interest, we also constructed a control dataset which contained 10,000 randomly-selected codon

sites covering the adenine nucleotides but without m6A modification (Figures S5C and S5D).

To evaluate the mRNA structure stability, we first ran RNAfold (Lorenz et al., 2011) to predict the secondary structures of all mRNA

sequences in the background dataset, which contained 10,000 randomly-selected ribosome occupancy sites from the genome.

Here, the mRNA sequences covering the codon sites of interest were 183 nucleotides long, as we extended each putative ribosome

occupancy site by 30 codons both upward and downward as input to ROSE.We thenmeasured the folding level of each sequence by

computing its double-stranded ratio (denoted by ds%) in the local region of a ribosome A-site, and regarded the top 5,000 mRNA

sequences with the highest ds% scores as highly folded. Next, we compared the intraRSSes of highly and weakly double-stranded

regions for both human and yeast (Figure S5E).

Moreover, we also investigated the relationship between RBP binding and the predicted ribosome stalling scores. Generally, we

estimated of the binding affinity of RBPs using the E- and Z-scores provided by the CISBP-RNA database (Ray et al., 2013). In partic-

ular, given a region R and an RBP binding motif set M, for any 7-mer m, we defined aff�max(R)=maxm˛R(maxm˛M(m)) for the max-

score estimation, and aff�mean(R)=meanm˛R(maxm˛M(m)) for the mean-score estimation, where maxm˛M(m) returns the maximum

E- or Z-score of the 7-mer m within the set M. All the four criterias were applied to detect strong RBP binding codon sites for the

subsequent statistical analysis (Figures 3A, 3B, S5A, and S5B).

As a specific RBP, the fragile X mental retardation protein (FMRP) (Figure S6A) had been relatively well studied in the literature.

Here, we estimated the FMRP binding affinity of the region downstream the ribosome A-site based on the known FMRP binding sites

identified by the PAR-CLIP experiment (Ascano et al., 2012). In particular, suppose that we index the codon position at the ribosome

A-site as zero. Then the downstream region covering positions from +1 to +3 is still protected by the ribosome (Figure S1). We were

particularly interested in estimating the binding affinity of FMRP in the region of next ten codons after the ribosome protected frag-

ment (i.e., codons from +4 to +13), which was denoted by R, and then investigating the correlation between this estimated binding

affinity score and RSS. We mainly used the abundance of the mapped reads of FMRP binding sites identified by PAR-CLIP (Ascano

et al., 2012) to estimate its binding affinity. Specifically, if there were N reads identified in region [i,i+x], then for any site s˛[i,i+x], its
FMRP binding affinity, denoted by aff(s), was estimated by aff(s)=N/x. After that, the overall binding affinity of the region R right after

the ribosome protected fragment was calculated by affðRÞ=P
s˛RaffðsÞ. Here we only considered the binding sites whose lengths

werewithin one standard deviation from themean calculated based on the length distribution of FMRPbinding sites, as the extremely

long regions may introduce bias to our analysis (Figure S6B).

Finally, we also reexamined the influence of positively charged residues on ribosome stalling. We first tested those codon sites

enriched with the positively-charged amino acids upstream (i.e., with the 10,000 highest ratios of the positively-charged amino acids

in the upstream 30 codons) in the genome. To probe this problem in more detail, we further separately looked into the specific posi-

tively-charged amino acids, including histidine, lysine and arginine (Figure S7).

Statistical Analysis on the Associations between Protein Secondary Structure and RSS
To prepare the protein SSE data, we first derived a set of non-redundant protein chains across human and yeast genomes from the

Protein Data Bank (PDB) (Madej et al., 2012), in which BLAST (Altschul et al., 1990) with the sequence-similarity cutoff P=10�7 was

used to compare two protein sequences. The SSEs of these protein chains (5,054 from human and 766 from yeast) were then

determined based on the mapping to the DSSP database (Kabsch and Sander, 1983; Touw et al., 2014), which contains the exper-

imentally-determined secondary structure assignments for the protein sequences in the PDB. To obtain the average position-specific

intraRSSes of a certain SSE pattern, all the eligible SSE-aligned sequences with a particular window size were extracted from the

genome with five flanking amino acids on both sides, and then the mean intraRSS of each position was calculated. Note that
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here we mainly considered the intraRSSes of those codons at the ribosome P-sites, where the corresponding amino acids are

concatenated to the nascent peptides (Figure S1).

Statistical Analysis on the Association between Transmembrane Domains and RSS
To prepare the TM protein data, we first downloaded all the available TM protein sequences of human and yeast as well as the cor-

responding TM domain information from the Uniprot database (UniProt Consortium, 2015). To avoid the biases that may be caused

by the influence between different TM segments, here we only considered the single-pass integral proteins and the last TM segments

of multispan TM proteins, which resulted in 4,235 human and 561 yeast proteins. For yeast proteins, we also excluded 65 TM se-

quences that are not bound by SRP according to the previous experimental study (Alamo et al., 2011). To characterize the intraRSS

landscape along the elongation process, all the protein sequences were aligned with regard to the start of the TM segment whose

position was indexed as zero, and then the mean intraRSS of each codon between positions -10 and +80 was calculated.

DATA AND SOFTWARE AVAILABILITY

The source code of ROSE is available at https://github.com/mlcb-thu/rose.
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